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Many notions of fairness
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Group fairness vs individual fairness

Group fairness
Addresses the discrimination against a particular group of people.
For instance:

Ethnicity (black vs white people)
Sex (women vs men)
Religion
…

Individual fairness
Addresses the discrimination at a personal level against a particular
individual.
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Causes of bias

Possible causes of bias include:

Bias in the data source: past decisions may already have been unfair

Unbalanced Data

Representation Bias

Measurement Bias

Limited Features Bias

Algorithmic Bias

…

It is important to identify the potential sources of bias, as the suitable definition of
fairness and the countermeasures depend on them.

N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman, A. Galstyan. A survey on bias and fairness in machine learning. ACM
Computing Surveys (CSUR) 54 (6), 1-35, 2021.
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Group fairness
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Notation and basic notions

Data model and predictor
X Legitimate attribute
A Sensitive attribute (binary)
Y Decision (binary)
Ŷ Prediction of the classifier (binary)

Usually we think of Ŷ, Y = 1 as the positive decision (granting a loan,
promotion, admission to college,…) and Ŷ, Y = 0 as the negative one.

Example

Loan

X employment, salary (income)
A ethnicity
Y loan decision
Ŷ prediction
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Some group fairness notions

Statistical Parity SP

P[Ŷ = 1 | A = 0] = P[Ŷ = 1 | A = 1] Ŷ ⊥ A

Statistical parity is usually too strong:

Example
In the example of the loan, if the income status
is unbalanced between the ethnic groups, in
order to satisfy SP the predictor should grant
loans also to some of the people with
insufficient income.
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Some group fairness notions

Conditional Statistical Parity CSP

P[Ŷ = 1 | X = x, A = 0] = P[Ŷ = 1 | X = x, A = 1] Ŷ ⊥ A | X

In contrast to SP, CSP allows disparity between the groups, as long as this disparity is
justified by the legitimate attributes.

There may be correlation between the decision and the group, but only via
the legitimate attributes ⇒ A, X and Ŷ form a Markov chain A− X− Ŷ

Example
The predictor can grant loans less frequently to the
disadvantaged ethnic group, as long as this disparity
is justified by the lack of sufficient income (to pay
back the loan).
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Some group fairness notions

Previous notions usually have a negative impact on the accuracy. To avoid this
problem, Hardt et al. [NIPS’16] proposed the following notion:

Equalized Odds EOdds

P[Ŷ = 1 | Y = y, A = 0] = P[Ŷ = 1 | Y = y, A = 1] Ŷ ⊥ A | Y

Example
The probability that the predictor takes the “right”
decision does not depend on the ethnic group.

The true positives (y = 1) and the false positives (y = 0) must be equally distributed
across the two groups. The same holds for the true negatives and the false negatives,
since Ŷ = 0 has complementary probability.
Again we have a Markov chain: A− Y− Ŷ

EOdds assumes implicitly that Y is unbiased. If the training data do not respect this
assumption, we need to correct them.

Moritz Hardt, Eric Price, Nati Srebro: Equality of Opportunity in Supervised Learning. NIPS 2016: 3315-3323 8



Some group fairness notions

A relaxation of EOdds, called Equal Opportunities, requires equal treatment
of the two groups only when the true decision should be positive:

Equal Opportunities EOpp

P[Ŷ = 1 | Y = 1, A = 0] = P[Ŷ = 1 | Y = 1, A = 1]

Example
The probability that the predictor grants
the loan when it is the “right” decision,
does not depend on the ethnic group.

Note that we don’t care of what happen when the true decision should be
negative. In the example, people from the privileged group who do not have
sufficient income may get the loan more frequently than those of the other
group in the same financial situation.
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Relation between fairness notions
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Auxiliary notions

Equal Base Rates

P[Y = 1 | A = 0] = P[Y = 1 | A = 1] Y ⊥ A

Conditional Equal Base Rates

P[Y = 1 | X = x, A = 0] = P[Y = 1 | X = x, A = 1] Y ⊥ A | X

Equal base rates and its conditional version correspond to statistical parity
and conditional statistical parity, respectively, but they are conditions on the
data source, rather than on the ML model.

Classifier’s independence from true decision

P[Ŷ = 1 | Y = 0] = P[Ŷ = 1 | Y = 1] Ŷ ⊥ Y

Clearly a classifier whose prediction is not correlated to the true decision
has minimal accuracy.
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Equalized Odds and Statistical Parity imply Equal Base Rates or Independence

Some fairness notions are incompatible, in the sense that their combination
may result in very strong assumptions about the data.

The following result, in Barocas et al. [2019], states that Statistical Parity and
Equalized Odds imply Equal Base Rates, or Independence of the classifier.

Theorem: SP + EOdds⇒ EBR or Ind

Ŷ ⊥ A + Ŷ ⊥ A | Y ⇒ Y ⊥ A or Ŷ ⊥ Y

Graphically:

S. Barocas, M. Hardt, A. Narayanan, Fairness and Machine Learning, fairmlbook.org, 2019,

http://www.fairmlbook.org.
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Conditional Equal Base Rates and Equalized Odds imply Conditional Statistical
Parity

Other notions work well together:

The following result states that Conditional Equal Base Rates and Equalized
Odds imply Conditional Statistical Parity.

Theorem: CEBR + EOdds⇒ CSP

Y ⊥ A | X + Ŷ ⊥ A | Y ⇒ Ŷ ⊥ A | X

Graphically:
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Relation between fairness, privacy and
accuracy
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In the rest of this talk we will focus on Equal Opportunity.

This notion is very popular because it is claimed to be fully
compatible with accuracy and privacy.

We are going to present some negative results about that
limit the extent of this claim.
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Accuracy and Bayes classifier

The accuracy of a classifier is defined as the probability that the prediction
coincides with the true decision:
Definition: Accuracy

Acc(Ŷ) def
= E 1Ŷ=Y =

∑
x,a,y

P[X = x, A = a, Ŷ = Y = y]

The Bayes classifier ŶBis defined as the classifier that, for every input x and a,
predicts the decision with highest probability. Namely:

Definition: Bayes classifier

P[ŶB = 1 | X = x, A = a] =

{
1 P[Y = 1 | X = x, A = a] ≥ 1

2

0 otherwise

Accuracy of the Bayes classifier
The Bayes classifier is optimal, i.e., it has the best accuracy, given by:

Acc(ŶB) =
∑
x,a

max
y

P[Y = y, X = x, A = a]

14



Trivial Classifier

Definition: Trivial Classifier
A classifier is trivial if the output distribution does not depend on the input:

P[Ŷ = 1 | X = x, A = a] = P[Ŷ = 1 | X = x′, A = a′] for all x, x′, a, a′

Definition: Optimal Trivial Classifier
The optimal trivial classifier ŶT is the trivial classifier that provides max
accuracy:

P[ŶT = 1 | X = x, A = a] =

 1 P[Y = 1] ≥ 1
2

0 otherwise

Lemma : Accuracy of the optimal trivial classifier
The optimal trivial classifier has the following accuracy:

Acc(Ŷ) = max
y

P[Y = y]
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Differential Privacy

Definition: Differential Privacy in ML
A learning algorithm A is ϵ-differentially private if for every pair of adjacent
training sets d and d′, and every modelM:

P[A(d) = M] ≤ eϵ · P[A(d′) = M]
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Fairness, Accuracy and Privacy: Impossibility results

Cummings et al. [UMAP’19] have proved the following result:

Theorem: incompatibility of EOpp, DP and Accuracy

For any ϵ, there are data models (distributions on the data) for which
any classifier that satisfies ϵ-differential privacy and EOpp cannot
have greater accuracy than the trivial one.

Successively, Agrawal [IJCAI’21] extended the result of Cummings et al. also to
an approximate notion of EOpp (when we consider a bound on the
difference of the two probabilities instead than strict equality) and to other
notions of fairness (equalized odds and statistical parity).

Rachel Cummings, Varun Gupta, Dhamma Kimpara, Jamie Morgenstern: On the Compatibility of

Privacy and Fairness. UMAP (Adjunct Publication) 2019: 309-315

Agarwal S. Trade-Offs between Fairness and Privacy in Machine Learning, in IJCAI 2021 Workshop on

AI for Social Good. ; 2021.
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A stronger result

Pinzon et al [2021] have proved a even stronger result than the one of
Cummings et al. Namely, we have found an impossibility result without the
DP constraint:

Theorem: incompatibility of EOpp, and Accuracy

There are data distributions on the data for which any classifier that
satisfies EOpp cannot have greater accuracy than the trivial one.

Carlos Pinźon, Catuscia Palamidessi, Pablo Piantanida, and Frank Valencia. On the impossibility of

non-trivial accuracy under fairness constraints. CoRR, abs/2107.06944, 2021.
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Proof
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Notation for relevant distributions

Relevant distributions

πxa
def
= P[X = x, A = a]

qxa def
= P[Y = 1 | X = x, A = a]

ρxa
def
= P[Ŷ = 1 | X = x, A = a]

The data model is deterministic if qxa ∈ {0, 1} for all x and a.
The classifier is deterministic if ρxa ∈ {0, 1} for all x and a.
In general we assume that data models and classifiers are probabilistic,
unless otherwise specified.
Note that the Bayes classifier ŶB and the optimal trivial classifier ŶT are
deterministic.
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Proof

Consider a partition of the domain X of legitimate features in two sets X1

and X2. Then impose a constraint on the the data model as follows:

qxa =


q1 x ∈ X1, a = 0
q2 x ∈ X2, a = 0
q3 otherwise

Where we assume that q1 < 1
2 and q2, q3 >

1
2 .

We also assume, wlog, that P[Y = 1] > 1
2 .
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Proof

Using this notation, equal opportunity can be rewritten as follows:

EOpp ⇔ (q1α1 + q2α2)q3r3 = q3α3(q1r1 + q2r2)

where:
α1

def
=

∑
X1

πx0ρx0 r1 def
=

∑
X1

πx0

α2
def
=

∑
X2

πx0ρx0 r2 def
=

∑
X2

πx0

α3
def
=

∑
X πx1ρx1 r3 def

=
∑

X πx1

Note that, by definition:

0 ≤ αi ≤ ri ∀i ∈ {1, 2, 3}

Furthermore:

αi = 0 iff ρxa = 0 for all x, a in the corresponding partition,
αi = ri iff ρxa = 1 for all x, a in the corresponding partition.
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Proof

If we consider α1, α2 and α3 as a system of Cartesian coordinates, we have
that each pair (data model, predictor) ”lives” in the three-dimensional
parallelepiped determined by the vertices (0, 0, 0), (r1, 0, 0), …, (r1, r2, r3).
Furthermore, EOpp is a linear
constraint on the αi’s, so it
determines an plane. The pairs (data
model, predictor) that satisfy EOpp
“live” in this plane.

It is easy to see (by solving the EOpp
constraint) that the plane passes by
(0, 0, 0), (r1, r2, r3), and
w1 = (0, r2, p2r2r3

p1r1+p2r2
).
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Proof

Consider an approximate version of EOpp:

EOL = P[Ŷ = 1 | Y = 1, A = 0]− P[Ŷ = 1 | Y = 1, A = 1]

Then the classifiers with EOL ≥ 0 “live” in the colored part of the
parallelepiped.
Because of the assumptions q1 < 1

2 ,
q2, q3 > 1

2 and P[Y = 1] > 1
2 , we have

that:
the Bayes classifier ŶB
corresponds to the point
vBayes = (0, r2, r3),
the optimal trivial classifier ŶT
corresponds to the point
vMaxTriv = (r1, r2, r3).
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Proof

To conclude the proof, we have to show that vMaxTriv is the point in the
plane with highest accuracy.

To this purpose, let us rewrite the accuracy using our notation. We have:

Acc(Ŷ) =
∑
i=1,2,3

(2qi − 1)αi + (1− qi)ri

Given the conditions on the qi’s, we have that Acc(Ŷ) is monotonic increasing
with α2. Hence we have only to consider the classifiers on the red line.

However, Acc(Ŷ) is monotonic
increasing with α3 but monotonically
decreasing with α1. To obtain
Acc(vMaxTriv) > Acc(w1) we need to
impose a final constraint, which is:

(2q3 − 1)r3 < (2q1 − 1)r1 + 2q3r3
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Approximate notions of fairness
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Equal Opportunity Loss

The notions of fairness introduced so far are rather strict because they
impose an equality between the probabilities relative to the two groups. We
can relax the various notions of fairness by imposing a bound on the
difference between the probabilities.

Here we give the definition for Equal Opportunity. Similar definitions can be
given for all other notions.

Equal Opportunity Loss

EOL = | P[Ŷ = 1 | Y = 1, A = 0] − P[Ŷ = 1 | Y = 1, A = 1] | < α
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Pareto optimality for the approximate notion of EOpp

Note: oppDiff = EOL, error = 1 - Accuracy
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Possible research directions

Characterize data distributions for which Equal Opportunity can be a
good notion of fairness (i.e., it offers a good trade-off with accuracy).

Relation with privacy: Characterize data distributions for which
“removing the sensitive feature” during the training phase improves
fairness without affecting accuracy significantly.
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Thanks !
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