Addressing algorithmic fairness through metrics and explanations

IDAI 2021 Summer School Course 5 (11:30-13:00)

Miguel Couceiro

Université de Lorraine, CNRS, Inria Nancy-Grand Est, LORIA

- Tackling data biases: balancing datasets
- Using explanations for assessing process fairness
- Addressing unfairness through unawareness
- Some use cases and available resources
- Discussions

Tackling data biases

Unbalanced dataset

- Common in real-world datasets
- Categories are not equally represented
- Lead to misclassification of under-represented categories

SMOTE

- Synthetic Minority Oversampling TEchnique¹
- Over-sampling minority class by creating "synthetic" examples

¹Chawla, *et al.* Synthetic Minority Over-sampling Technique. JAIR. 2002

Using explanations for assessing fairness

Based on **decision outcomes**, fairness can be assessed based on:

- Fairness metrics: individual & group fairness, equal opportunity, demographic parity, equal accuracy, etc.
- Process fairness: model's dependence on "sensitive features" (e.g., salient features such as race, age, or sex,...)

Two main approaches to dealing with ML unfairness:

Enforce fairness constraints while learning, e.g.:

 $P(y_{pred} \neq y_{true} | race = Black) = P(y_{pred} \neq y_{true} | race = White)$

 $\label{eq:complexity} \textbf{Drawback:} \ \ Complexity, \ fairness \ \ ``gerrymandering'' \ \& \ overfitting$

Exclude sensitive/salient features (for instance, COMPAS)

Drawback: Decreased accuracy!

Idea: Use FI-explanations to measure dependence on "sensitive features"

3

Local explainers: Simple surrogates on a neighbourhood

These frameworks are based on three main components:

- Interpretable Data Representation: two-way translation x → zx of the orginal data into (and from) an interpretable domain.
- Data Sampling: choice of neighboorhood of the instance to explain
- Explanation Generation: learning the surrogate (often linear) on the chosen neighbourhood in the interpretable domain. Weights give FI.

https://github.com/fat-forensics/events/blob/master/resources/2020_ecml-pkdd/slides/1. 2-surrogates.pdf

 $z_x = [0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0]$

LIME: Local Interpretable Model-agnostic Explanations²

LIME: learns a linear $g \in \mathcal{G}$ on a neighborhood of z_x (x to explain) by $g = \operatorname{argmin}_{g' \in \mathcal{G}} \mathcal{L}(f, g', \pi_{z_x}) + \Omega(g')$

for the distance $\mathcal{L}(f,g',\pi_{z_x})$ of f and g' on the kernel π_{z_x}

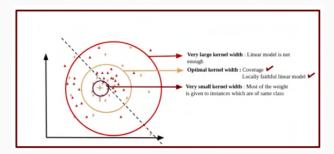


Figure 1: Illustration of optimal kernel on the (interpretable) space (z_x) 's)

²Ribeiro, et al. "Why Should I Trust You?": Explaining predictions of any...

LIME Explanations³

LIME: learns a model g on the neighborhood of z_x to explain

$$g(z_x) = \alpha_0 + \sum_{1 \le i \le d'} \alpha_i z_{x_i},$$

where $\hat{\alpha}_i$ represents the contribution or importance of feature z_x

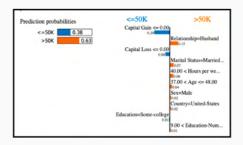


Figure 2: Local explanation in case of Adult dataset (salary prediction)

³https://github.com/marcotcr/lime

SHAP: SHapley Additive exPlanationsP⁵⁶

Still: an additive feature attribution method, i.e., linear model

$$g(z) = \phi_0 + \sum_{1 \le i \le d'} \phi_i z_i,$$

where ϕ_i represents the contribution (importance) of interpretable feature z_i

SHAP: uses Shapley kernel π_x and thus estimation of Shapley values ϕ_i (coalitional game theory) **NB:** KernelSHAP is Costly!⁴

Figure 3: SHAP explanation in case of Adult dataset (salary prediction)

⁴Faster variants like TreeSHAP exist (not model agnostic!)

⁵Lundberg, *et al.* A Unified Approach to Interpreting Model Predictions...

⁶https://github.com/slundberg/shap

Tackling unfairness through unawareness: feature dropout and aggregation **Original Goal:** Human-centered approach to reduce a model's dependence on sensitive/salient features while improving its performance

Proposal: Framework consisting of two components:

- (i) to assess a model's dependence on sensitive features (fair/unfair)
- (ii) (if dependent) to render it fairer (without compromising performance)

Idea: Use a FI-explainer to assess model's dependence sensitive feat.s

Examples: LIME, SHAP and gradient based (under further assumptions) **Here:** we focused on model agnostic approaches... Fair Model: if its outcomes do not depend on sensitive features

Input: model M, dataset D, sensitive features F, explanation method E**Output:** M if fair, otherwise a fairer and more accurate M_{final}

Proposal: FixOut with two components

- **Exp**Global: for global explanations (FI)
- Ensemble_{Out}: Ensemble approach relying on "feature dropout"

FixOut: https://fixout.loria.fr/

Fair Model: if its outcomes do not depend on sensitive features

Input: model M, dataset D, sensitive features F, explanation method E**Output:** M if fair, otherwise a fairer and more accurate M_{final}

Proposal: FixOut with two components

- Exp_{Global}: for global explanations (FI)
- Ensemble_{Out}: Ensemble approach relying on "feature dropout"

FixOut: https://fixout.loria.fr/

Idea: Explanations can provide insight into process fairness.

However: LIME and SHAP provide "local" explanations

Solution: Sample a set of instances and aggregate the contributions to estimate the global contribution of each feature. **Example:** random or "Sub-modular pick"

Output: *k* most important (globally) features.

Rule:

If there is at least one sensitive feature among the top-k, then M is deemed unfair and **Ensemble**_{Out} applies.

Let a_1, a_2, \ldots, a_k be the k features that Exp_{Global} outputs

Suppose that $a_{j_1}, a_{j_2}, \ldots, a_{j_i}, i > 1$, are sensitive (i.e., $\in F$)

Then FixOut trains i + 1 classifiers obtained by "feature dropout":

- M_t after removing a_{j_t} from the dataset, for $t = 1, \ldots, i$, and
- M_{i+1} after removing all sensitive features $a_{j_1}, a_{j_2}, \ldots, a_{j_i}$.

Output: Ensemble classifier M_{final} as an aggregation of all M_t 's.

Example: for an instance x and a class C,

• FixOut: ensemble classifier M_{final} defined as a **simple average**

$$P_{M_{final}}(x \in C) = \sum_{t=1}^{i+1} w_t P_{M_t}(x \in C).$$

$$P_{M_{final}}(x \in C) = \sum_{t=1}^{i+1} w_i P_{M_t}(x \in C),$$

where $w_t = \frac{c_{j_t}}{1 + \sum_{u=1}^{i} c_{j_u}}$, $1 \le t \le i$, and $w_{i+1} = \frac{1}{1 + \sum_{u=1}^{i} c_{j_u}}$ using normalized global feature contributions c_i 's.

O Alternatively: use logistic regression (LR) for weight tuning

Example with LIME explanations

ExpGlobal: LIME + random sampling
(of instances and use their explanations to get global explanations)

As before: if $\text{Exp}_{\text{Global}}$ outputs a_1, a_2, \ldots, a_k and $a_{j_1}, a_{j_2}, \ldots, a_{j_i} \in F$, then *FixOut* trains i + 1 classifiers obtained by "feature dropout":

- M_t after removing a_{j_t} from the dataset, for $t = 1, \ldots, i$, and
- M_{i+1} after removing all sensitive features $a_{j_1}, a_{j_2}, \ldots, a_{j_i}$.

Ensemble_{Out}: Ensemble classifier *M*_{final} defined as

- a simple average (FixOut)
- a weighted average (FixOut (w))

German Credit Card Score (UCI):

- Applicant profiles (demographic and socio-economic).
- Goal: Predict credit risks (likely & unlikely to pay back)
- Sensitive: 'Statussex', 'telephone', 'foreign worker'

Empirical setting:

- Random Forest: 70% training & 30% test data
- Used: SMOTE oversampling & threshold tuning while training
- Accuracy of *M*: 0.783

Question: Is this model fair?

German Credit Card Score (UCI):

- Applicant profiles (demographic and socio-economic).
- Goal: Predict credit risks (likely & unlikely to pay back)
- Sensitive: 'Statussex', 'telephone', 'foreign worker'

Empirical setting:

- Random Forest: 70% training & 30% test data
- Used: SMOTE oversampling & threshold tuning while training
- Accuracy of *M*: 0.783

Question: Is this model fair?

FixOut with LIME: RF on German dataset (Exp_{Global})

Feature	Contribution
foreignworker	2.664899
otherinstallmentplans	-1.354191
housing	-1.144371
savings	0.984104
property	-0.648104
purpose	-0.415498
existingchecking	0.371415
telephone	0.311451
credithistory	0.263366
duration	-0.223288

Table 1: Top 10 features used by *M* (by 'submodular pick')

Hence: Model deemed unfair

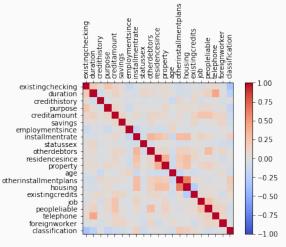
Approach: Train multiple models obtained with feature dropout

- M1: Model trained after removing 'foreignworker'.
- M2: Model trained after removing 'telephone'.
- M3: Model trained after removing the 2 (accuracy of 0.773) NB: Accuracy drop when all sensitive features are removed!
- M_{final}: Ensemble of M1, M2 and M3 (accuracy of 0.786)

Origina	I	Ensemble				
Feature	Contribution	Feature	Contribution			
foreignworker	2.664899	otherinstallmentplans	-1.487604			
otherinstallmentplans	-1.354191	housing	-1.089726			
housing	-1.144371	savings	0.679195			
savings	0.984104	duration	-0.483643			
property	-0.648104	foreignworker	0.448643			
purpose	-0.415498	property	-0.386355			
existingchecking	0.371415	credithistory	0.258375			
telephone	0.311451	job	-0.252046			
credithistory	0.263366	existingchecking	-0.21358			
duration	-0.223288	residencesince	-0.138818			

Result: M_{final} is "fairer" & at least as accurate (from 0.783 to 0.786)

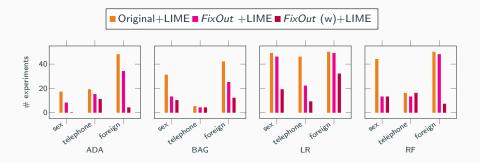
Some preprocessing: What about correlations?



Pearson correlation (German dataset)

Example of available tools: Fairlearn.org

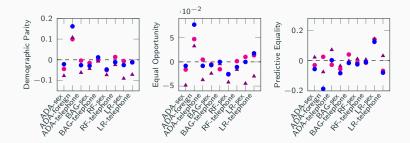
Fairness & Classification assessment (German dataset)



Classification assessment

Dataset Method			Acci	uracy		Precision				Recall			
Dataset	iviethod	ADA	BAG	LR	RF	ADA	BAG	LR	RF	ADA	BAG	LR	RF
	Original	.7362	.7019	.7398	.7556	.5707	.5124	.5716	.6883	.5317	.5738	.5495	.3595
German	FixOut	.7419	.7273	.7418	.7598	.5801	.5549	.5754	.7060	.5321	.5371	.5622	.3585
	FixOut (w)	.7405	.7219	.7400	.7583	.5764	.5471	.5708	.7019	.5373	.5076	.5602	.3541





Example with **SHAP** explanations

Same dataset and empirical setting...

Feature	Contribution
existingchecking	-7.11624
statussex	-5.950176
housing	-3.27344
job	-2.868195
residencesince	2.832573
telephone	2.290478
property	2.042944
otherinstallmentplans	-1.985275
existingcredits	1.984547
purpose	1.711321

 Table 2: Top 10 features used by M

Hence: Model deemed unfair

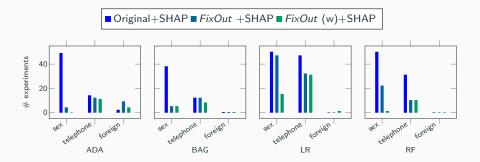
Approach: Train multiple models obtained with feature dropout

- M1: Model trained after removing 'statussex'.
- M2: Model trained after removing 'telephone'.
- M3: Model trained after removing the 2
 NB: Performance drop when all sensitive features are removed!
- M_{final}: Ensemble of M1, M2 and M3

Original		Ensemble				
Feature	Contribution	Feature	Contribution			
existingchecking	-7.11624	existingchecking	-4.285092			
statussex	-5.950176	housing	-3.771932			
housing	-3.27344	property	3.506007			
job	-2.868195	job	-3.061209			
residencesince	2.832573	employmentsince	2.646814			
telephone	2.290478	existingcredits	2.409782			
property	2.042944	otherinstallmentplans	-2.389899			
otherinstallmentplans	-1.985275	savings	-2.215407			
existingcredits	1.984547	residencesince	2.212183			
purpose	1.711321	credithistory	1.188159			

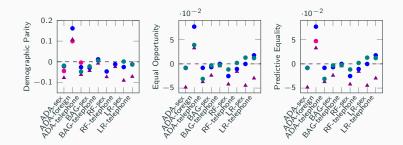
Result: M_{final} is fairer & better performance

Fairness & Classification assessment (German dataset)



Classification assessment

Dataset Method			Acci	uracy		Precision				Recall			
Dataset	iviethod	ADA	BAG	LR	RF	ADA	BAG	LR	RF	ADA	BAG	LR	RF
	Original	.7362	.7019	.7398	.7556	.5707	.5124	.5716	.6883	.5317	.5738	.5495	.3595
German	FixOut	.7419	.7273	.7418	.7598	.5801	.5549	.5754	.7060	.5321	.5371	.5622	.3585
	FixOut (w)	.7427	.7253	.7417	.7613	.5809	.5537	.5746	.7003	.5390	.5142	.5632	.3708



No free lunch...

	Method		ADA ¢			BAG ø			LR ø			RF ø	
		Sex	^{telephone}	fo _{reign}	foreign	^{telephone}	fo _{reign}	ser	^{telephone}	foreign	Set	^{telephone}	foreign
	Original+LIME	-0.13	0.12	3.84	-2.13	0.33	6.36	-13.90	10.08	25.55	-3.29	0.85	23.00
	FixOut +LIME	-0.05	0.09	0.85	-0.63	0.15	1.88	-7.46	2.86	11.90	-0.55	0.67	7.47
German	FixOut w+LIME	0.00	0.06	0.02	-0.79	0.11	0.65	-2.00	1.24	3.28	-0.49	0.69	0.23
err	Original+SHAP	-0.68	0.10	0.01	-5.13	1.55	0.00	-31.20	11.59	0.00	-10.53	3.21	0.00
10	FixOut +SHAP	-0.02	0.08	0.04	-0.76	1.08	0.00	-10.20	3.52	0.00	-1.87	0.69	0.00
	$\mathit{FixOut} \texttt{ w+SHAP}$	-0.07	0.08	0.13	-0.87	0.71	0.00	-1.37	3.25	0.06	-1.87	0.69	0.00

FixOut: brief hands-on

• FixOut's start guide (Jupyter notebook):

https://fixout.loria.fr/2020/12/09/tutorials/

• Demo: FixOut on selected datasets (tabular data)

Explanations: LIME, SHAP

Global explanations : Random Sampling, Submodular-pick

Aggregation: simple average, weighted average, fine-tuned with LR

Fairness metrics: demographic parity, equal opportunity, etc.

http://vps-9eca9157.vps.ovh.net/

What about other data types?

Example: FixOut on a hate speech classifier

- Goal: Classify tweets as hate speech or not
- Idea: Bag of Words (BoW) (Or: Groups of words)
- Dataset: Hate speech dataset ⁷

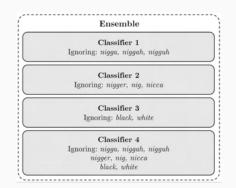


Illustration of textual classifiers used in the ensemble.

 $^{^{7}}$ Davidson et al. Automated hate speech detection and the problem of offensive language. AAAI. 2017

Setting: RF classifier, SHAP explanations, RS and BoW

	Withou	It grouping	With	grouping
Word	Rank	Contrib.	Rank	Contrib.
niggah	18	0.149	23	0.03
nigger	15	0.164	21	0.031
nigguh	22	0.13	83	0.008
nig	12	0.202	65	0.011
nicca	22	0.107	39	0.018
nigga	20	0.125	12	0.067
white	25	0.087	36	0.018

In fact: Can be used on different data types **e.g.** graphs and other complex data (needs suitable representation...)

Further Resources & Tools

- Python toolbox open-sourced for inspecting Fairness, Accountability and Transparency (FAT) aspects of data, models and predictions.
- build LIME yourself (bLIMEy)⁸: an algorithmic framework for building custom local surrogate explainers of black-box model predictions, inc. LIME and SHAP

• Git repository:

https://github.com/fat-forensics/fat-forensics

⁸Sokol, et al. bLIMEy: Surrogate Prediction Explanations Beyond LIME. arXiv preprint arXiv:1910.13016

- Fairness assessment (metrics)
- Bias mitigation (e.g. reweighing)
- Visualization
- IBM AI Fairness 360⁹ (Python, R) https://aif360.mybluemix.net/
- Fairlearn (Python) https://fairlearn.org/

⁹Bellamy et al. AI Fairness 360: An Extensible Toolkit for Detecting, Understanding, and Mitigating Unwanted Algorithmic Bias. 2018. arXiv:1810.01943

Orpailleur¹⁰

Miguel Couceiro

Guilherme Alves

Fabien Bernier

Vaishnavi Bhargava

Amedeo Napoli

Comète¹¹

Catuscia Palamidessi

Ruta Binkyte

Karima Makhlouf

Carlos Pinzon

Sami Zhioua

10 https://orpailleur.loria.fr/ 11 https://team.inria.fr/Comete

EURO J. on Decision Process: Focus on Algorithmic Fairness

Important Dates:

- August 31, 2021: Extended abstract
- December 15, 2021: Full submission
- March 31, 2021: Notification
- June 30, 2022: Revision due
- Summer 2022: Publication

Call for Paper: Feature Issue on Fair and Explainable Decision Support Systems

Guest Editors:

Mguel Couceiro, University of Lorraine, CARS, Loria, France (miguel couceiro@ioria.tr) Luis Galérraga, IMRA Rannes, France (uis galerrage@inria.tr)

Motivation

Againment desistes are reassage testing implicited in a faily basis. They are carries on by instrumential models beneric using matchine testing beforegain on the disordered from participations. The locan carries include desistes reaged replaces for last grants, increase desistes, predictor of orient increases, and many other disorders with local and encourse, impaid to modely. While All-basis previous generalized within poor disorders with local and encourse, impaid to modely. While All-basis previous generalized within poor prepare and the previously performed replaces, and invational test participations. The last of insurance prepare and the previously performed replaces, and invational performs the association of common which the scattering designation enters.

Most of the notaris of latimets locus on the outcomes of the decision process, and they are inquired by several anddiscrimination efforts that an in sense that upshleppi proups (e.g. static) most insoluted; are tradeed tarily, das und, the problem of improving aggrethric thereas can be formated as an optimization one insoluted. This makes a fatness of soft it into this setting, e.g., tainness through unasaments and ourstefactuals. This makes a number of challenging for through, respectively.

The bring us to the underlying inclusion of the Fasture Issue that arise at calencing contributions that found in the virtual determinant of a significant primary determinant of the significant primary determinant in the primary determinant primary determinant in the primary determinant of the primary determinant primary determinant approximation the excitation of the primary determinant primary determinant in the primary determinant in the primary determinant of the primary determinant in the primary

Merci de votre attention ! Thank you for your attention! Grazie mille per la vostra attenzione! Vielen Dank für Ihre Aufmerksamkeit!

...and let's keep in touch!

Alves, *et al.* Making ML models fairer through explanations: the case of LimeOut, *AIST'20*.

Bhargava, *et al.* LimeOut: An Ensemble Approach To Improve Process Fairness, *XKDD'20* @ECML-PKDD.

Garreau, *et al.* Explaining the Explainer: A First Theoretical Analysis of LIME, *HCoRR*, *abs/2001.03447*, *2020*.

Grgić-Hlača, *et al.* Beyond distributive fair-ness in algorithmic decision making: Feature selection for procedurally fair learning. *AAAI'18*.

Henin, *et al.* Towards a generic framework for black-box explanations of algorithmic decision systems. *XAI'19* @IJCAI.

Zafar, *et al.* Fairness constraints: Mechanisms for fair classification, *AISTATS'17*.