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Fairness as non-discrimination

Fair model: that protects salient groups against discrimination

Discrimination: “unjust or prejudicial treatment of different categories

of people, especially, on the grounds of race, age, or sex”

Example: Decision Making process...

Human: Objective & Subjective reasoning

Machine: Only objective but ...
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Motivation: unfair algorithmic decisions

Algorithmic decisions: are objective but they can be unfair

Common “sources”: Data Collection & Model choice/design

https://www.propublica.org/article/

machine-bias-risk-assessments

-in-criminal-sentencing
https://www.bbc.com/news/business-50365609
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Motivation: unfair algorithmic decisions

https://www.bbc.com/news/technology-35902104
https://www.businessinsider.com/

how-algorithms-can-be-racist-2016-4?IR=T

Other Critical applications of algorithmic decisions: loan requests, job

applications, Stop & Frisk, etc.

Need of fairness: Unfair outcomes not only affect human rights, but

they undermine public trust in ML & AI.

Guidelines/Rules: GDPR (in the EU), CCPA (in the US), etc.

4

https://www.bbc.com/news/technology-35902104
https://www.businessinsider.com/how-algorithms-can-be-racist-2016-4?IR=T
https://www.businessinsider.com/how-algorithms-can-be-racist-2016-4?IR=T


Defining “fairness” in ML & AI

Based on decision outcomes, fairness can be assessed based on:

Fairness metrics: individual & group fairness, equal opportunity,

demographic parity, equal accuracy, etc.

Process fairness: model’s reliance on “sensitive features”

(e.g., salient features such as race, age, or sex,. . . )

Two main approaches to dealing with ML unfairness:

1 Enforce fairness constraints while learning

2 Forget sensitive/salient features

NB: No free lunch!
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Fair and Explainable AI

This has propelled the interest in the design of fair and transparent AI systems

Explainable AI

Fairness AI

Source: trends.google.fr 6

trends.google.fr


Venues on Explainable, Fair & Trustworthy AI

Fairness and Bias in AI/ML:

FAccT: ACM Conference on Fairness, Accountability, and Transparency

AIES: AAAI/ACM Conference on Artificial Intelligence, Ethics, and Society

FORC: Symposium on Foundations of Responsible Computing

BIAS: Int. Workshop on Algorithmic Bias in Search and Recommendation

Explainable AI/ML:

XAI: eXplainable AI at AAAI

XKDD: eXplainable Knowledge Discovery in Data Mining at ECML-PKDD

AIMLAI: Advances in Interpretable Machine Learning and AI at ECML-PKDD

Seminars:

TrustML: Bi-weekly Seminar Series of The Trustworthy ML Initiative
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Other venues on Explainable, Fair & Trustworthy AI

Projects:

TAILOR ICT-48 project: Foundations of Trustworthy AI integrating Learning,

Optimisation and Reasoning

IPL HyAIAI: Hybrid Approaches for Interpretable AI

NoBIAS: A Marie Sk lodowska-Curie Innovative Training Network

Tools:

FAT Forensics: Python toolkit for evaluating Fairness, Accountability and

Transparency of AI systems

AI Fairness 360: IBM Open source toolkit for examining, reporting, and

mitigating discrimination and bias in ML models

FixOut: Python toolkit for rendering ML models fairer using explanations,

feature dropout and ensembles
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Course 5: Addressing algorithmic fairness through...

1st part (10h - 11h)

Introduction, presentation and motivation

Fairness notions and metrics

Relation between fairness notions

Relation between fairness, accuracy and privacy

2nd part (11h30 - 13h)

Tackling data biases: balancing datasets

Using explanations for assessing process fairness

Addressing unfairness through unawareness: feature dropout and aggregation

Some use cases and available resources

Discussions
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